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Radon
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- 222Rn is an odorless, colorless radioactive noble-gas (t1/2 = 3.82 d), which naturally 
occurs in the environment via the 238U decay chain

- due to diffusion processes, it is accumulated inside of buildings, and is thought to be 
one of the leading causes for lung cancer [1]

 EURATOM 2013/58 Basic Safety Standards 
< 300 Bq/m³ inside buildings (1 222Rn atom per 1018 gas molecules)

- Outdoor 222Rn concentration (10 Bq/m³) can be used as a proxy for environmental 
research (“Radon tracer method” for Green house gases, i.e. [2]) 

 traceradon-empir.eu

- Reliable (SI-traceable) measurements are necessary

[1]: S. Darby et. al., BMJ, 2005
[2]: C.Grossi et. al., Atmos. Chem. Phys., 18, 5847-5860, 2018



Measurements of 222Rn
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- Calibration of 222Rn measurement devices  Reference atmospheres

- High concentration : gaseous 222Rn standard

- Low concentration : stable (i.e. non-decaying) 222Rn reference atmospheres

How to generate stable atmospheres with known concentration?

- Use 226Ra in such physical-chemical form that 222Rn is released and is 
accumulated in some volume (potentially diluted)

- Not all generated 222Rn is released : quantify χ

χ = 1 − A222Rn
A226Ra

[1,2]

[1]: D. Linzmaier, A. Röttger, Applied Radiation and Isotopes, 2013
[2]: F. Mertes et. al., Applied Radiation and Isotopes, 2020



226Ra decay chain and kinetics
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Measuring emanation rate
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- 𝜒𝜒 is a function of environmental parameters (e.g. temperature, pressure, humidity)
 On-line measurements?

- Previous formula is only applicable under steady-state!

- Sudden change in 𝜒𝜒(𝑡𝑡) only appears in the time series of A222Rn as its convolution with 
the solution of the linear time-invariant system of ingrowth differential equations

- Estimating the emanation rate 𝜂𝜂(𝑡𝑡) (released 222Rn atoms per unit time) from a time-
series of measurements is an inverse-problem

 Bayesian sequential filtering on state-space x(t)

x = A222Rn A226Ra 𝜂𝜂
𝑑𝑑𝜂𝜂
𝑑𝑑𝑡𝑡
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State space model
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- General approach: Model 𝜂𝜂(𝑡𝑡) as a stochastic process, which drives the system of DEs

- Since 𝜂𝜂(𝑡𝑡) is completely latent, we need to account for the “unknown-ness” of it, through 
allowing it to have some randomness  Use a stochastic process, but matter of prior 
assumptions (e.g. comparable to placing a prior on “allowed” function types that 
𝜂𝜂(𝑡𝑡) must match)

- For example, restrict to somewhat smooth behaviour (e.g. continuous 1st derivative)

dA222Rn = −λ222RnA222Rndt + λ226RaA226Radt − λ222Rn𝜂𝜂 𝑡𝑡 𝑑𝑑𝑡𝑡

change = - decay        + ingrowth    - outflow

d2η
dt2

= −γ
dη
dt

+ dβ

Brownian motion / Random increments
Power spectral density Q (unknown)



Inference steps - Prediction
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1. Predict new state value at time instant t from prior measurement

dx = Fxdt + Ldβ x t = e𝐹𝐹 𝑡𝑡0−𝑡𝑡 𝑥𝑥 𝑡𝑡0 + �
𝑡𝑡0

𝑡𝑡

𝑒𝑒𝐹𝐹(𝑡𝑡−𝜏𝜏)𝐿𝐿𝑑𝑑𝛽𝛽𝜏𝜏 Itô stochastic integral

𝑝𝑝 𝑥𝑥𝑡𝑡 𝑥𝑥0 ∝ 𝑁𝑁 Ψ(𝑡𝑡, 𝑡𝑡0)𝜇𝜇𝑥𝑥0 ,Ψ 𝑡𝑡, 𝑡𝑡0 Σ𝑥𝑥0Ψ
𝑇𝑇(𝑡𝑡, 𝑡𝑡0) + 𝑊𝑊

Ψ 𝑡𝑡, 𝑡𝑡0 = 𝑒𝑒𝐹𝐹(𝑡𝑡−𝑡𝑡0) 𝑊𝑊 = �
𝑡𝑡0

𝑡𝑡

𝑒𝑒𝐹𝐹(𝑡𝑡−𝜏𝜏)𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑒𝑒𝐹𝐹𝑇𝑇(𝑡𝑡−𝜏𝜏)𝑑𝑑𝑑𝑑

[1]

[1]: Simo Särkkä, Arno Solin, Applied Stochastic Differential Equations, 2019, Cambridge University Press

We have

F =

−λ222Rn λ222Rn −λ222Rn 0
0 −λ226Ra 0 0
0 0 0 1
0 0 0 −γ

x = A222Rn A226Ra 𝜂𝜂
𝑑𝑑𝜂𝜂
𝑑𝑑𝑡𝑡

T

Radioactive system
Assumptions about 𝜂𝜂

for with the above can explicitly be calculated 
(analytically), i.e. using the Jordan form.

x(t) is a Gaussian process.



Inference steps – Correction
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2. Correct predicted state based on a measurement x = A222Rn A226Ra 𝜂𝜂
𝑑𝑑𝜂𝜂
𝑑𝑑𝑡𝑡

T

- Measure A222Rn (and possibly A226Ra) through measuring a spectrum 
(i.e. γ-ray spectrum)

- However, spectral data acquisition takes time 
(typical integration time 104 s)
e.g. integrates the state, over a stochastic process

thus

γ-detector

226Ra source

y t, lt = H�
0

lt

x t + τ dτ

Can be tricky to solve, since it results in a Riemann integral 
over a stochastic Itô integral



Inference steps – Correction
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- It can be shown that, in these models, the measurements are also a Gaussian process,
where

𝑝𝑝 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 ∝ 𝑁𝑁
𝜇𝜇𝑥𝑥𝑡𝑡
𝐾𝐾𝑙𝑙𝑡𝑡𝜇𝜇𝑥𝑥𝑡𝑡

,
Σ𝑥𝑥𝑡𝑡 Σ𝑥𝑥𝑡𝑡𝐾𝐾𝑙𝑙𝑡𝑡

𝑇𝑇

𝐾𝐾𝑙𝑙𝑡𝑡Σ𝑥𝑥𝑡𝑡 𝐾𝐾𝑙𝑙𝑡𝑡Σ𝑥𝑥𝑡𝑡𝐾𝐾𝑙𝑙𝑡𝑡
𝑇𝑇 + 𝐽𝐽𝑙𝑙𝑡𝑡 + 𝑅𝑅𝑡𝑡

Klt = H�
0

lt

eFτdτ

Propagation factor to 
account for integrating

Jlt = H �
−lt

0

�
0

τ

�
0

τ

eFaLQLTeFTbda db dτHT

Additional variance from integrating
the stochastic part of the process
(scary, in our case symbolically. 
Numerical Algorithms are available)

𝑅𝑅𝑡𝑡

Measurement noise 
Variance. Estimated
from observed
counting statistics 
(e.g. 𝜎𝜎 = N)



Improvement
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- Q (power spectral density of driving Brownian motion process) is a parameter of the 
model. Tuned for performance of filter (based on likelihood of collected data):

high Q : faster reaction to steep changes, high noise in filter output
low Q   : inability to react to steep changes, low noise in filter output

- not ideal, we need the best of both worlds : Switching linear dynamical system! (SLDS)
Bonus: probabilistic change-point detection

Idea is to use multiple indexed filters and calculate the probability for the active one
(based on likelihood of its prediction)

but for SLDS, the posterior is a mixture of Gaussians, which can not be analytically
computed. Exponential explosion of mixture components.

Algorithmic approximation : Collapse mixture to a smaller but ideally fitting mixture [1]
(i.e. through approximation of their Kulback-Leibler divergence [2])

[1] D. Barber, Journal of Machine Learning Research, 2006
[2] A. R. Runalls, IEEE Transactions on Aerospace and Electronic Systems, 43, 2007



Example for a 2-Filter setup
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- Expect 𝜂𝜂(𝑡𝑡) to be constant over prolonged times but then suddenly change

- Model proposal for a specifically recorded time-series:

- Filter 1: “0 Variance Brownian Motion”  completely deterministic dynamics

- Filter 2: High Variance of Brownian Motion  can adapt quickly to change in 𝜂𝜂 𝑡𝑡

- Posterior is mixture of both filters, weighted by the likelihood of their predictions
 This is also the probability for stable regimes in the time-series

- Inference in such systems is well reported on in literature, e.g. [1]

- Tuning of model parameters through maximum likelihood (e.g. which filters explain 
the time-series best, only approximately possible)

- Implemented in C++ for speed (using EIGEN Library for Cholesky decomposition)
[1] D. Barber, Journal of Machine Learning Research, 2006



Example Filter output
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Conclusion
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- A physically motivated model to infer the 222Rn emanation behaviour based on 
continuous measurements of residual 222Rn was developed

- Analysis of a time-series over 85 days shows reasonable estimation of the emanation 
and its uncertainty

- To account for the integrating measurement behaviour, the algorithms reported on in 
literature were extended to incorporate this, by deriving the statistical properties of this 
system from theory

- A first step towards establishing sequential Bayesian inference in radioactivity analysis, 
which are currently not widespread (even though it is a prime example of a LTI system)

- Possibility for on-line operation is given

- For now, only filtering is done (no backwards pass through the data, e.g. every inferred 
point only depends on data that was available up to that time)
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