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Arctic Rn measurementchallenges

= Northern high latitudes are characterised by frozen or waterlogged soils, often
yielding small %?Rn fluxes (low local radon source function)

= Air in long term equilibrium with the ocean contains 0.04 —0.06 Bq m-3 of radon
(less for transport over sea ice) (lowambient background radon)

= Tropospheric air subsiding over the pole can be very low in radon
(e.9., <0.01Bg m=3) (admixtures with very low radon air)

= For large parts of the year outdoor radon in Arctic and subarctic environments
may be characterised by concentrations <1Bg m-3

= For the best chance to reliably interpret radon observations in such environments,
Instruments with very low detection limits are required




Two- filterdual- flow-loop %%Rn monitors

= ANSTO radon monitors were developed by progressive refinement of two-filter
monitors developed in the 1970s and 1980s (detection limits 3-4 Bg/ m?)

= For over 20 years ANSTO two-filter radon monitors have been recognised as the best
In the world for continuous, reliable low-level outdoor radon monitoring

= The detection limit (DL) of the 1500 L model is 0.025 Bq m-3
30-min temporal resolution, 45-min response time (correctable, Griffiths et al. 2016)

= Monitors provide a “direct” radon measurement: independent of sampling height,
mixing state, surface characteristics, humidity and aerosol loading
(also do not suffer tube loss effects)

= Since the DLis inversely proportional to volume (detector size), the most sensitive
instruments are not readily portable (3.0 x 0.8 x 0.8 m?3; ~120 kg)




Two- filterdualflow-loop %2°Rn monitors
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Mostaccurate 222Rn measurementsinthe world

ANSTO'’s largest radon monitor (5000 L working volume) is located at the ANSTQO’s smallest radon monitor
Cape Grim Baseline Air Pollution Station in Cape Grim, Tasmania. is the 200 L model (traceRadon)
(detection limit ~5 mBg-m=3 — not commercially available) (detection limit around 0.14 Bg-m~)
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20 micron stainless
steel mesh filter
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Example ofhigh-latitude performance

Macquarie Island
Remote oceanic site
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Directapplications for ICOSsites

1= Characterising background (or "baseline”) concentrations of GHG & ODS !
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= Estimation of local- to regional-scale fluxes of GHGs (radon tracer method - fraceRadon)

Air mass fetch analysis (in conjunction with back trajectories)

Characterising the atmospheric mixing state (urban air quality & urban climate studies)

Evaluate regional and global chemical transport models (transport and mixing)
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Baseline characterisation ofairmasses

20 , @ | (b)
50 r—
2 | .| § - . o
(o] 10 . o 0 2000 2000 B000 * of 0
R - - o N [ ]
> S T I R S
g e o.' ‘..-. «* . % 0 L./ -‘.1" .!l .
O oo * "".".. -.‘.!-' % % ."h,""" ;-.".. )
L L [ ™ []
RIS O Lt B o PR
¥ S LR . A —
uﬁ . * -14 T~ 2040 mBg m™ "aceanic equilibrium” range
e a— 20-40mBq m* "oceanic equilibrium” range
-1+ LI B EL L L L R L
10
14 L 20-40 mBq m™ "oceanic equilibrium® range (C) 1|:|u_ L (d)
.
- . L
I 2000 4000 B0 o * . o :.. bl
. ..-"". :q..-o'{' d
., LY LA - & L,°
i‘..' %.00'0'-‘.' . b
T e e
o®
-
_m . 5. ﬁ_—— 20-40 mBg m” "oceanic equilibrium” range
-3"u"l?m'm"|4E:nn"'ﬂ:m?"'|""l""|"" L L e B B L L B L B B B B B B
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Radon (mBg m™)



Radon-derived baseline determination

acrossthe Southern Ocean

Alastair Williams?, Scott Chambers?, Alan Griffiths®, Paul Krummel?, Zoe Loh?, Peter Sperlich3,
Casper Labuschagne#, Sangbum Hong®and Taejin Choi®
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7 years of GHG (Carbon Dioxide and Methane) observations
at the Cape Grim Baseline Air Pollution Station
(traditionally a 6 to 9 step meteorological & statistical

baseline selection process is applied — site specific)
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Evaluation ofGlobal Models

= For over 30 years %%?Rn has been used to evaluate transport & convection in GCMs & CTMs

= However, its efficacy depends on the quality and coverage of available
radon concentration and flux measurements

= Zhang et al (2021) used radon from 51sites globally to compare convection schemes in
GEOS-CHEM - the lack of suitable observations throughout Canada, Alaska, Siberia,
Greenland, Iceland & Africa was highlighted

= Accurate knowledge of radon in northern high-latitudes is currently limited to
measurements from a few sites in Ireland, Finland and the Netherlands

= The present lack of suitable observations is responsible for a large uncertainty in simulated
radon concentrations & fluxes in northern high latitudes (particularly Canada, AK& Siberia)

= This has necessitated an oversimplified formulation of ?2Rn fluxes in these regions which
limits efficacy of radon as an assessment tool for convection and transport

= To better constrain seasonal & interannual variability of 2?Rn, long-term (multi-year)
monitoring is required in these under-represented regions



Summary

= ANSTO radon monitors are reliable, robust, accurate, with low power & maintenance
requirements, and are fully remotely controllable —ideal for remote deployment

= The small (200L) model would also provide a valuable reference for public health
studies

= Their measurement capabilities are well suited for characterising diurnal and
seasonal changes in radon in the challenging conditions of northern high latitudes

= 35 ANSTO radon monitors are already operating worldwide (including WMO GAWand
ICOS sites); with many having records for > 10 years

= Adding sites in northern high latitude regions would greatly enhance this existing
capability

= Both the public health and climate research communities would benefit
significantly from this enhanced capability




The End ...
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